Bresenham’s Line Drawing Algorithm
Theory:

· The Bresenham’s line drawing algorithm has provided a computationally attractive scan conversion algorithm.
· It uses integer addition, subtraction and multiplication by 2, and computer can perform integer addition, subtraction and multiplication very rapidly.
· The algorithm always increments either x coordinate or y coordinate by one unit value depending on slope of line. The increment value in other variable is determined by examining distance between actual line location and nearest pixel. This factor is called decision factor.
· In Bresenham’s algorithm we first consider the scan conversion process for lines with positive slopes less than one (Gentle slope lines). Therefore, for plotting pixels along line path x coordinate is incremented by unit value and increment in y coordinate is decided based on decision factor.
Bresenham’s Line Drawing Algorithm Working Principal:
[image: image1]
	
	
	
	
	(x2,y2)

	
	
	
	
	

	
	
	
	 Yk+1
	

	(x1,y1)
	
Xk+1
	
	
	Y
 Yk

· In above figure, d1 and d2 are the distances between actual line path (y coordinate) and near pixels Yk and Yk+1.

· The decision factor Pk decides which pixel to select either Yk or Yk+1

Where, Pk = dx (d2 – d1) …………………….. (1)

· The equation of line is,

 y = mx + b ……………………. (2)
· From this equation we can calculate Y coordinate by putting value of X coordinate as

 x = Xk+1

Put value of x in equation (2)

 y = m (Xk + 1) + b ……………………… (3)

From fig., d1 = (Yk + 1) -y

 d1 = (Yk + 1) - m (Xk + 1) – b ………. from equation (3)

 d2 = y - Yk

 d2 = m (Xk + 1) + b – Yk ………. from equation (3)

Calculate (d2 – d1)

 d2 – d1 = m (Xk + 1) + b – Yk – (Yk + 1) + m (Xk + 1) + b
 d2 – d1 = 2m (Xk + 1) +2b - Yk – (Yk + 1)
 d2 – d1 = 2m (Xk + 1) +2b - 2Yk – 1 ………………………… (4)

Let’s substitute m = (dy) / (dx) in equation (4)

 d2 – d1 = 2 (dy / dx) (Xk + 1) +2b - 2Yk – 1

Multiply both sides by (dx),
 (dx) (d2 – d1) = 2 (dy) (Xk + 1) +2b (dx) - 2Yk (dx) – 1 (dx)

 (dx) (d2 – d1) = 2 dy Xk + 2 dy +2b (dx) - 2 dx Yk – dx

 (dx) (d2 – d1) = 2 dy Xk - 2 dx Yk + 2 dy + dx (2b - 1)

Replace 2dy + dx (2b-1) by c,

 (dx) (d2 – d1) = 2 dy Xk - 2 dx Yk + c ………………………… (5)

Where, c = 2dy + dx (2b-1) is constant value and is independent pixel at Yk

From equation (1),

 Pk = dx (d2 – d1)

 Pk = 2 dy Xk - 2 dx Yk + c ………. from equation (5)

 Pk = 2 dy Xk - 2 dx Yk + c ………………………… (6)

If decision factor Pk is negative choose lower pixel
If decision factor Pk is positive choose upper pixel

Calculate next decision factor,

 Pk+1 = 2 dy (Xk+1) - 2 dx (Yk+1) + c ………………..…… (7)

Subtract equation (6) from equation (7),

 Pk+1 - Pk = 2 dy (Xk+1) - 2 dx (Yk+1) + c - 2 dy Xk + 2 dx Yk – c

 Pk+1 - Pk = 2 dy (Xk+1) - 2 dx (Yk+1) - 2 dy Xk + 2 dx Yk

 Pk+1 - Pk = 2 dy (Xk+1 – Xk) - 2 dx (Yk+1 - Yk)

But X coordinate is incremented by 1 i.e. (Xk+1 – Xk) = 1

 Pk+1 - Pk = 2 dy - 2 dx (Yk+1 - Yk)

 Pk+1 = Pk + 2 dy - 2 dx (Yk+1 - Yk) ………………..…… (8)
Where, (Yk+1 - Yk) is either 0 or 1 depending on sign of Pk

If Pk < 0 then (Yk+1 - Yk) = 0

Equation (8) becomes,

 Pk+1 = Pk + 2 dy ………………..…… (9)

And if Pk > 1 then (Yk+1 - Yk) = 1

Equation (8) becomes,

 Pk+1 = Pk + 2 dy – 2 dx ………………..…… (10)

Starting decision parameter Pk at k = 0 i.e. P0 is,

 P0 = 2 dy (0) - 2 dx (0) + c

 P0 = c

 P0 = 2dy + dx (2b-1)

 P0 = 2dy + 2 dx b -dx

 P0 = 2dy + 2 dx (y - mx) -dx

 P0 = 2dy + 2 dx (0 – m(0)) -dx

 P0 = 2 dy – dx ………………..…… (11)

Bresenham’s Line Drawing Algorithm:

Step 1:

Read line end points (x1 ,y1) and (x2,y2) such that they are not equal

(if they are equal plot the point and end the algorithm)

Step 2:
Calculate,

 dx = |x2 – x1|

dy = |y2 – y1|

Step 3:

Initialize starting point of line i.e. x = x1 and y = y1
Step 4: Plot first point i.e. (x , y)
Step 5: Obtained initial value of decision parameter Pk as

 Pk = 2dy - dx
Step 6:
if Pk < 0

{

x = x + 1

y = y
 Pk = Pk + 2dy

 }

if Pk > = 0

{

x = x + 1

y = y + 1

 Pk = Pk + 2dy – 2dx

 }

 putpixel(x,y,WHITE)

Step 7: Repeat step (6) dx times
Step 7: Stop
Advantages of Bresenham’s Line Drawing Algorithm:

· A fast incremental algorithm
· Uses only integer calculations such as addition / subtraction and bit shifting

· Accurate, efficient

· Integer calculations

· Uses symmetry

· Adapted to display circles, ellipse and curves
Disadvantages of Bresenham’s Line Drawing Algorithm:
· Cannot generalize to arbitrary conics
· Gives an optimal fit for lines

· Meant for basic line drawing

· Cannot draw smooth lines
C code for Bresenham’s Line Drawing Algorithm:
// Bresenham’s Line Drawing Algorithm

include<stdio.h>

#include<conio.h>

#include<graphics.h>

void main()

{

int gd=DETECT,gm;

int dx,dy,x1,y1,x2,y2,x,y,p;

clrscr();

initgraph (&gd,&gm,"C:\\TC\\BGI");

printf("Enter the co-ordinates of the first point \n");

printf("x1= ");

scanf("%d ",&x1);

printf("y1= ");

scanf("%d ",&y1);

printf("Enter the co-ordinates of the second point \n");

printf("x2= ");

scanf("%d ",&x2);

printf("y2= ");

scanf("%d ",&y2);

dx= x2-x1;

dy= y2-y1;

p = 2 * (dy) – (dx);
x = x1;

y = y1;

putpixel (x,y,WHITE);

for(i = 1 ; i < = dx ; i++)

{

 If (p < o)

 {

 x = x + 1 ;

 P = P + 2dy ;

 }
 else

 {

 x = x + 1;
 y = y + 1;
 P = P + 2dy – 2dx;
 }

putpixel (x,y,WHITE);

 }
 getch();

 closegraph();

 }
Y

X

O (0,0)

Y’

 Yk

Yk+1

Xk+1

d1

d2

	Prof.U.N.Abhonkar Sandip Polytechnic | Confidential
	 SHAPE * MERGEFORMAT

<By- Prof.U.N.Abhonkar,Sandip Polytechnic

