
OPERATING SYSTEM

Operating System Structure

Introduction

 Multiprogramming

 Operating System has an important feature i.e. multiprogramming. A single user

cannot keep CPU and I/O devices busy which reduces utilization of CPU and I/O

devices

 In multiprogramming CPU & I/O devices are kept busy by assigning different jobs to

them. The jobs are kept in memory, which are executed one by one.

 If one job is busy in I/O operations, instead of being waiting or idle CPU switches to

next job. So CPU is kept busy. This way OS manages resources and jobs by switching

technique.

 Multiprogramming ensures efficiency; it organizes jobs in such a way that CPU and

I/O devices are kept busy at all times.

 Time Sharing

 Time sharing is another feature which is logical extension of multiprogramming &

multitasking. In time sharing system CPU executes multiple jobs.

 The switching time among different jobs is too less that user does not understand

that CPU executes only one job at a time. So switching speed is very fast.

 Time sharing system ensures reasonable response time which is achieved using the

technique of Swapping. In swapping processes are swapped in and out of memory to

the disk.

 Time sharing system provides File System. A file system is collection of file related

utilities present on the disk. File system is present on disks and needs disk

management.

OPERATING SYSTEM

 It provides mechanism for protecting resources from inappropriate use, mechanism

for job synchronization and communication and checks that deadlock condition

should not occur. It creates interactive computing environment.

 OS provides quick access to users by providing very short response time. This

increases CPU efficiency. It also does job scheduling and CPU scheduling.

 For multiprogramming & time sharing systems job pools are created on disk. Job

pool consists of all processes residing on disk and awaiting allocation of main

memory.

 Memory Management

 OS does memory management by providing Virtual memory which allows execution

of process that is not completely in memory.

 The benefit is that this technique allows user to run program whose size is more

than main memory.

2.1. Operating System Services

 A set of operating-system services provides functions that are helpful to the user

 Followings are the major services provided by operating system

1. User Interface

2. Program Execution

3. Input Output operations

4. File System manipulation

5. Communications

6. Error Detection

7. Resource allocation

8. Accounting

9. Protection and Security

OPERATING SYSTEM

A) User Interface

 Almost all operating systems have a user interface (UI)

 Varies between Command-Line (CLI), Graphics User Interface (GUI), Voice UI, Batch

 Command-Line Interface (CLI)

 CLI allows direct command entry

 Sometimes implemented in kernel, sometimes by systems program

 Sometimes multiple flavors implemented – shells

 Primarily fetches a command from user and executes it

 Sometimes commands built-in, sometimes just names of programs

 If the latter, adding new features don’t require shell modification

 Graphics User Interface (GUI)

 User-friendly desktop metaphor interface. Usually uses mouse, keyboard, and

monitor.

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause various actions

(provide information, options, execute function, open directory (known as a

folder)

 Invented at Xerox PARC. Many systems now include both CLI and GUI

interfaces. Microsoft Windows is GUI with CLI “command” shell.

 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath and

shells available. Solaris is CLI with optional GUI interfaces (Java Desktop,

KDE)

 Batch Interface

 Batch allows command environment which executes commands one by one

 A batch of commands is created by user contains multiple executable

commands in a sequence

 This batch is executed to execute the set of commands included in it.

OPERATING SYSTEM

B) Program Execution

 OS provides an environment where user can conveniently run programs.

 User does not worry about memory allocation or multitasking or anything

 The system must be able to load a program into memory and to run that

program, end execution, either normally or abnormally (indicating error)

C) Input Output Operations

 A running program may require I/O, which may involve a file or an I/O device.

 OS hides details of underlying hardware of an I/O device from user

 For better efficiency and protection, the users are not allowed to directly

interact with I/O devices

 OS becomes bridge between user and I/O devices

D) File System Manipulation

 The file system is of particular interest. Obviously, programs need to read and

write files and directories, create and delete them, search them, list file

Information, permission management.

 OS handles issues related to permissions like read, write, execute, access deny

depending on ownership of file

 It involves creating, deleting and searching of file by its name also

E) Communications

 Processes may exchange information, on the same computer or between

computers over a network

 Communications done may be via shared memory or through message

passing (packets moved by the OS)

 User does not have to worry about passing messages to each other this work

is done by OS

OPERATING SYSTEM

F) Error Detection

 OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user program

 For each type of error, OS should take the appropriate action to ensure

correct and consistent computing

 User program can’t control this service because it involves monitoring and in

case altering of memory or de allocation of memory for faulty programs

 Debugging facilities can greatly enhance the user’s and programmer’s abilities

to efficiently use the system

G) Resource allocation

 When multiple users or multiple jobs running concurrently, resources must

be allocated to each of them

 Many types of resources - Some (such as CPU cycles, main memory, and file

storage) may have special allocation code, others (such as I/O devices) may

have general request and release code

H) Accounting

 To keep track of which users use how much and what kinds of computer

resources

 It helps in finding out usage statistics

 It is useful for researchers to find out usage requirements and requirements

to reconfigure the system

I) Protection and Security

 The owners of information stored in a multiuser or networked computer

system may want to control use of that information, concurrent processes

should not interfere with each other

OPERATING SYSTEM

 Protection involves ensuring that all access to system resources is controlled

 Security of the system from outsiders requires user authentication, extends to

defending external I/O devices from invalid access attempts

 If a system is to be protected and secure, precautions must be instituted

throughout it. A chain is only as strong as its weakest link

2.2. System Calls

 System Call is a communication made by an operating system with processes.

 System call provides an interface between process and operating system

 Operating system provides services to user level processes because of system

calls. To implement system calls operating system enters kernel mode to provide

service to user level process

 It is a programming interface to the services provided by the OS

 It is typically written and used in a high-level language (C or C++)

 It is mostly accessed by programs via a high-level Application Program Interface

(API) rather than direct system call use

 Three most common APIs are Win32 API for Windows, POSIX API for POSIX-

based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and

Java API for the Java virtual machine (JVM)

 System programs provide basic functioning to users so that they do not need to

write their own environment for program development e.g. editors, compilers

and for execution e.g. shell. System programs are the bundles of system calls

 When any process request for a particular service to the operating system,

respective system calls are made.

 Ex. if one file is copied into another. For this copy operation following operations

are required-

 names of source and destination files should be known

OPERATING SYSTEM

 checking that whether given files exists or do it requires access permission; if yes

read the contents from source file

 To perform these operations, system calls are made by operating system to

provide services to user program of copy operation

 Linux/UNIX has about 60 system calls

 The most calls are written in C.

 These calls can be accessed from C programs.

 There are similar system programs that provide similar system call

features/services

 Ex, Basic I/0, Process control (creation, termination, execution), File operations

and permission, System status.

OPERATING SYSTEM

System Call Implementation

 During implementation a number is assigned with each system call. It is used to

number the system calls

 System call interface maintains a table indexed according to these numbers

 System call interface invokes system call in OS kernel and returns status of system

call and any return values

 Caller does not know how system call is implemented. Caller uses API(Application

Programming Interface) and understands what OS will do as a result

 Operating system details are hidden form programmer by API which is managed by

runtime library. Compiler includes set of functions built in to libraries.

OPERATING SYSTEM

 Standard C library example-

System Call Parameter Passing

 Often, more information is required than simply identity of desired system call

 Exact type and amount of information vary according to OS and call

 Two general methods used to pass parameters to the OS"

1. Simplest: pass the parameters in registers, in some cases, may be more

parameters than registers. Parameters stored in a block, or table, in memory, and

address of block passed as a parameter in a register. This approach taken by Linux

and Solaris

2. Parameters placed, or pushed, onto the stack by the program and popped off the

stack by the operating system. Block and stack methods do not limit the number or

length of parameters being passed

OPERATING SYSTEM

 Ex, Parameter Passing via Table-

Types of System Calls

Followings are the types of system calls

1. Process control

2. File management

3. Device management

4. Information maintenance

5. Communications

A) Process Control

 If a program is running the OS may either halt program execution normally or

abnormally i.e. abort operation has to be performed

 If currently running process is terminated or if a problem arises, then error

message is generated

 This memory is taken up by debugger to check the errors

 If a running program discovers and error, it has to define the error level

OPERATING SYSTEM

 If errors are more high level error can be define and if no errors are there 0

level error is defined

 For executing multiple commands, command executer executes number of

programs given by processor

 To understand that when process execution is completed, where the control

should be returned, it is necessary to find out status of program whether it is

lost, loaded, saved, completely executed etc.

 For controlling processes in multitasking system it is necessary to determine

and reset process attributes of a job or process

 The process is terminated when it is no longer needed. Sometimes processes

get the signals to stop at particular event. To wait for particular event process

has to wait. When program gets execute at each and every occurrence of the

timer interrupt, value of program counter is recorded for further use.

 If there is requirement to start a new process, in UNIX the shell executes fork()

system call. Exec() system call is used to load a process from memory and

executes it

 Process control system calls include end, abort, load, execute, create process,

terminate process, get/set process attributes, wait for time or event, signal

event, and allocate and free memory.

 Processes must be created, launched, monitored, paused, resumed, and

eventually stopped. When one process pauses or stops, then another must be

launched or resumed. When processes stop abnormally it may be necessary to

provide core dumps and/or other diagnostic or recovery tools.

 Various system calls related to process control are as follows:-

1. end, abort

2. load, execute

3. create process, terminate process

4. get process attributes, set process attributes

OPERATING SYSTEM

5. wait for time

6. wait event, signal event

7. allocate and free memory

B) File management

 File management system calls include create file, delete file, open, close, read,

write, reposition, get file attributes, and set file attributes.

 These operations may also be supported for directories as well as ordinary files.

 Various system calls related to file management are as follows:-

1. create file, delete file

2. open, close

3. read, write, reposition

4. get file attributes, set file attributes

C) Device management

 Device management system calls include request device, release device, read,

write, reposition, get/set device attributes, and logically attach or detach devices.

 Devices may be physical (e.g. disk drives), or virtual / abstract (e.g. files,

partitions, and RAM disks).

 Some systems represent devices as special files in the file system, so that

accessing the "file" calls upon the appropriate device drivers in the OS.

 Various system calls related to Device management are as follows:-

1. request device, release device

2. read, write, reposition

3. get file attributes, set file attributes

4. Logically attach or detach devices

OPERATING SYSTEM

D) Information maintenance

 Information maintenance system calls include calls to get/set the time, date,

system data, and process, file, or device attributes.

 Systems may also provide the ability to dump memory at any time, single step

programs pausing execution after each instruction, and tracing the operation of

programs, all of which can help to debug programs.

 Various system calls related to Information maintenance are as follows:-

1. get time or date, set time or date

2. get system data, set system data

3. get process, file or device attributes

4. set process, file or device attributes

E) Communications

 Communication system calls are create/delete communication connection,

send/receive messages, transfer status information, and attach/detach remote

devices.

 Two models-

 Message passing:-

 The message passing model must support calls to:

 Identify a remote process and/or host with which to communicate.

 Establish a connection between the two processes.

 Open and close the connection as needed.

 Transmit messages along the connection.

 Wait for incoming messages, in either a blocking or non-blocking state.

 Delete the connection when no longer needed.

 Shared Memory:-

 The shared memory model must support calls to:

 Create and access memory that is shared amongst processes (and threads.)

OPERATING SYSTEM

 Provide locking mechanisms restricting simultaneous access.

 Free up shared memory and/or dynamically allocate it as needed.

 Message passing is simpler and easier, (particularly for inter-computer

communications), and is generally appropriate for small amounts of data.

 Shared memory is faster, and is generally the better approach where large

amounts of data are to be shared

 Various system calls related to communication are as follows:-

1. Create, delete communication connection

2. Send or receive messages

3. Transfer status information

4. Attach or detach remote devices

Uses of System Calls

 System calls provide an interface between the running program i.e. process and

operating system.

 System calls allow user-level processes to request some services from the

operating system which the process can’t do itself.

 System calls provide basic functioning to users so that they do not need to write

their own environment for program development and program execution.

 System calls are used to perform input/ output operations which involve reading

or writing a particular area and this request is satisfied by the operating system.

It is because of the critical nature operations, the operating system does itself

every time they are needed.

OPERATING SYSTEM

2.3. Operating System Structure

Followings are the types of operating system structure

1. Simple Structure

2. Layered Structure

3. Micro kernel

4. Monolithic System

A) Simple Structure

 Earliest operating system MS DOS has the simple operating system structure

 This OS provides most functionality with less space hence this OS is not divided

into different modules

 MS DOS has not created interfaces, functional or access levels, due to which the

structure of MS DOS is not complicated. It uses basic I/O functions to execute its

input and output operations.

 Due to this simple structure and use of basic functions MS DOS is vulnerable to

malicious programs which causes whole system crash when user program fails.

 The reason behind this was Intel 8080 was used as hardware and it was not able

to process dual mode and does not provide protection against access to

hardware.

B) Layered Structure

 The operating system is divided into a number of layers (levels), each built on top

of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N)

is the user interface.

 With modularity, layers are selected such that each uses functions (operations)

and services of only lower-level layers

OPERATING SYSTEM

 There are mainly two operating systems which use layered structure, i.e. Unix

and MS DOS

A. UNIX Layered Structure

 UNIX – limited by hardware functionality, the original UNIX operating system

had limited structuring. The UNIX OS consists of two separable parts viz.

Systems programs and The kernel

 Consists of everything below the system-call interface and above the physical

hardware

 Provides the file system, CPU scheduling, memory management, and other

operating-system functions; a large number of functions for one level

 Kernel is the most important component of UNIX OS which is heart of UNIX.

 Kernel is further divided into series of interfaces and device drivers.

 These interfaces and device drivers are added on need basis.

OPERATING SYSTEM

 There is specific position of kernel. Everything which is below system call

interface and above physical hardware is kernel

 Kernel provides main functions which are performed by OS itself

 Some of the functions are file system, CPU scheduling, memory management

and other operating system functions through system calls

B. MS DOS Layered Structure/ Layered approach

OPERATING SYSTEM

C) Micro kernel

 The basic idea behind micro kernels is to remove all non-essential services

from the kernel, and implement them as system applications instead, thereby

making the kernel as small and efficient as possible.

 Most micro kernels provide basic process and memory management, and

message passing between other services, and not much more.

 Security and protection can be enhanced, as most services are performed in

user mode, not kernel mode.

 System expansion can also be easier, because it only involves adding more

system applications, not rebuilding a new kernel.

 Mach was the first and most widely known microkernel, and now forms a

major component of Mac OSX.

 Windows NT was originally microkernel, but suffered from performance

problems relative to Windows 95. NT 4.0 improved performance by moving

more services into the kernel, and now XP is back to being more monolithic.

 Another microkernel example is QNX, a real-time OS for embedded systems.

OPERATING SYSTEM

 Moves as much from the kernel into “user” space

 Communication takes place between user modules using message passing

 Benefits:

1. Easier to extend a microkernel

2. Easier to port the operating system to new architectures

3. More reliable (less code is running in kernel mode)

4. More secure

5. Performance overhead of user space to kernel space Communication

D) Monolithic System

 Modern OS development is object-oriented, with a relatively small core kernel

and a set of procedures/modules which can be linked in dynamically.

 OS is collection of procedures each of which can call each other whenever it

needs

 Each procedure in system has well defined interface in terms of parameters

and results

 Modules are similar to layers in that each subsystem has clearly defined tasks

and interfaces, but any module is free to contact any other module, eliminating

the problems of going through multiple intermediary layers.

 The kernel is relatively small in this architecture, similar to micro kernels, but

the kernel does not have to implement message passing since modules are free

to contact each other directly.

 Details of procedures are hidden thus supporting information hiding

 Only official entry points are can be called from outside modules

 System calls provided by OS are requested by user programs by arranging

parameters in registers or stacks.

 Then a special trap instruction is executed known as kernel call or supervisor

call

OPERATING SYSTEM

 Monolithic organization propose following basic structure

1. Main procedure invokes requested system call

2. Set of service procedures carry out system calls. For each system call separate

service procedure is assigned

3. Set of utility procedures help service procedures ex. Fetching data from user

program

Fig. Structure of Monolithic System

2.4. Components of Operating System

Followings are the operating system components-

1. Process management

2. Main memory management

3. File management

4. I/O management

5. Secondary storage management

A) Process Management

 Process is any task executed by CPU. It could be a program in execution (user

process) or it could be internal systems task executed by CPU (system process).

 Process may be one instance or moment of a program in execution. It is a unit to

measure work done by CPU.

OPERATING SYSTEM

 OS manages many kinds of activities of user programs to system programs; each of

these is called as process.

 During program execution different resources are required ex. I/O devices, data,

program memory etc. which are part of some process. A process requires input that

includes complete execution components like code, data, Program Counter (PC),

registers, OS resources in use etc.

 As CPU executes tasks and for every task number of process are working so process

management is required throughout execution.

 In process management, CPU does following activities-

 Creation and deleting of System & User processes

This activity creates as well as deletes system & user processes

 Suspension & resumption of processes

This activity suspends i.e. temporary stops and continues process as per situation

occurs in the system.

 Mechanism for process synchronization

Synchronization of process is required when one process may give some input to

other process and execution of second process proceeds.

Process synchronization ensures coordination of different processes which runs at a

time.

 Mechanism for process communication

Processes need communication with each other to ensure its full execution and

smooth running of multiple processes by using different resources at a time.

 Mechanism for deadlock handling

When multiple processes run at a time wait for each other, a deadlock situation

occurs. OS handles this deadlock situation.

OPERATING SYSTEM

B) Main Memory Management

 In computer system, there are two types of memories available. Primary memory

includes RAM, ROM, PROM, EPROM etc and Secondary memory includes mass

storage like hard disk, floppy drives, CD, DVD etc.

 RAM is major part of primary i.e. main memory which is large array of words or

bytes. Each word or byte has its own memory address by which it is referred.

 For execution of any task or instructions and calls to I/O devices takes memory from

main memory. Means main memory provides storage that can be accessed directly

by CPU.

 Memory Protection

 In order to have memory protection, add two registers that determine the range of

legal addresses a program may access:

 Base register – holds the smallest legal physical memory address.

 Limit register – contains the size of the range

 CPU does following activities for main memory management -

 To keep track of each and every memory location

 To decide which process to be loaded in main memory

 Allocation and de allocation of memory space

OPERATING SYSTEM

C) File Management

 A file is defined as collection of related data that could be a collection of executable

statements or simply a data file.

 These files are stored on secondary storages such as disks which provides long term

storage

 The storage devices are categorized on the basis of their characteristics like speed,

capacity data transfer rate and access methods

 Operating system decides where and how to store data on disks. Data is stored on

storage devices in the locations such as tracks, sector and cluster.

 Directories are memory locations which store or organize files in it. Directories

provide ease to use files. These directories may contain files or other directories in

it.

 Operating System does following activities for file management -

1. Creation and deletion of files

2. Creation and deletion of directories

3. Support for primitives for manipulating files and directories

4. Mapping of files on to secondary storage

5. Backup of files on secondary storage

D) Input/ Output System Management

 Input output system consists of buffer caching system, hardware, I/O devices with

device drivers, a general device-driver interface, drivers for specific hardware

devices and supporting systems. Operating system manages this input output

system.

 I/O subsystem hides complexity of hardware devices from the user. Only device

drivers directly interact with the I/O hardware.

 Operating system tries to utilize I/O devices maximum for maximum efficiency.

 Operating system does following activities for I/O management

OPERATING SYSTEM

1. To keep track of all I/O devices to assign jobs to them.

2. To keep I/O devices continuously busy

3. To manage various I/O operations

4. To provide buffers to store those processes which are waiting due to busy I/O

device.

5. To use techniques like spooling for waiting processes waiting for I/O devices.

E) Secondary Storage Management

 Since main memory (primary storage) is volatile and too small to accommodate all

data and programs permanently, the computer system must provide secondary

storage to back up main memory.

 Most modern computer systems use disks as the principle on-line storage medium,

for both programs and data

 Secondary storage consists of tapes, disks and other media that can hold

information. This information is divided into bytes or words. Each location of in

storage has its own address. The set of all addresses is called as address space

 Operating system does following activities for secondary storage management

 Free space management- management of free space available on secondary storage

 Storage allocation- allocate storage to new files for their creation or written

 Disk scheduling- scheduling requests for memory access

OPERATING SYSTEM

Booting

 The procedure of starting a computer by loading kernel is known as booting

the system. Bootstrap is a smaller piece of code which finds out where kernel is

and locates it in main memory and starts is execution.

 The general approach when most computers boot up goes something like this:

 When the system powers up, instruction registers are loaded in memory

locations an execution starts.

 Bootstrap loader program exists there which is stored in ROM not in RAM as

RAM is unknown in initial stage when system starts and ROM does not need

initialization and not affected by viruses.

 Bootstrap program does diagnostic test that checks whether all devices are in

proper state to continue system program or not. It also initializes CPU registers,

device controllers etc and starts the OS in main memory.

 The bootstrap program then looks for a non-volatile storage device containing

an OS. Depending on configuration, it may look for a floppy drive, CD ROM

drive, or primary or secondary hard drives.

 Generally OS is stored on disk and when system starts OS get loaded in RAM

not in ROM as ROM memory is small size due to which OS can’t be stored in it.

 In case of cellular phones, PDA’s and game console OS is stored in ROM.

 Assuming that OS is stored in disk it goes to a hard drive, it will find the first

sector on the hard drive and load up the fdisk table, which contains information

about how the physical hard drive is divided up into logical partitions, where

each partition starts and ends, and which partition is the "active" partition used

for booting the system.

 For a single-boot system, the boot program loaded off of the hard disk will then

proceed to locate the kernel on the hard drive, load the kernel into memory,

and then transfer control over to the kernel.

OPERATING SYSTEM

 For dual-boot or multiple-boot systems, the boot program will give the user an

opportunity to specify a particular OS to load, with a default choice if the user

does not pick a particular OS within a given time frame. The boot program then

finds the boot loader for the chosen single-boot OS, and runs that program

 Once the kernel is running, it may give the user the opportunity to enter into

single-user mode, also known as maintenance mode. This mode launches very

few if any system services, and does not enable any logins other than the

primary log in on the console. This mode is used primarily for system

maintenance and diagnostics.

 When the system enters full multi-user multi-tasking mode, it examines

configuration files to determine which system services are to be started, and

launches each of them in turn. It then spawns login programs (gettys) on each

of the login devices which have been configured to enable user logins.

